SUG3ESTION FOR A "MAPPED" EXTENSION OF APL

C. Leibovitz
University of Alberta
Computing Center

Users of APL are under the "spell" of beauty, conciseness and elegance of the language.
They have however to go back ts Fortran, for instance, whenever they caanot avoid a loop
executed a great number of times in order to limit the CPU time used.

The npatural desire for enlarging the class[1] of cases im which "it would pay® to use APL,
is the origin of a great number of suggestions for modifications to and extensions of APL.

However, an APL interpreter is a complicated collection of interrelated software forming a
nnity that should not be disrupted. A modification im amy part of the collectiom will have
repercussions on the operation of the remainder of the programs and there is no a priori reason
preventing these repercussions from being harmful and in need of necessary corrections that may
not be velcomed ({if at all possible).

It 1is therefore not enough to show that a given modification is needed; it is necessary to
show that it is indeed implementable and has no disruptive character.

our proposed modification is, in a sense, a "mapping® of an actual interpreter. The logical
structure of the mapping is such that we may conclude that: "if there exists an APL interpreter
that works, then our mapping will work toco."

Review Of A Non-Modified APL Interpceter

Each time a line is enter2d from a terminal, the interpreter checks the nature of the line:
is it for instance a command? 5r a line in definition mode? or in execution mode?... Let us
designate by CHECK the module of the interpreter that finds out the nature of a line and decides
what other module is to handle the line. If the line has been entered in the execution mode, it
will be executed from right to left. However, €£or a number of reasons, this cannot be a
straightforward procedure:

1. There 1is no one-to-one correspondence between a "primitive mathematical symbol" and
an execution routinz. One same symbol may be a monadic function or may be a dyadic
one.

2. The mathematical 1seaning of a symbol may depend on the nature of another symbol

placed at its left.
3. There may be brackets altering the normal right-to-left order of operations.
4o There may be mistakes inp the line making it unexecutable.

There nust therefore exist a module that will analyse the limne, will call execution
routines in a proper order anmd provide those routines with the values of the wvariables.

¥e are not concerned here with the way in which this is done, it is enough for us to know
that it is actually done, i.e. there exists in the interpreter a module, we call it GRAM, that
takes care of a line in execution mode. GRAM issues "orders" for space, for fetchinmg values for
parameters and variables, for =2rasing intermediate unnecessary results, for storing needed
intermediate results, for finding out which routine is to be called, for calling it, for issuing
error messages.

He thus designate by GSRAM all the parts of the interpreter that stand between a line
recogrized in execution mode, and its actual execution. Everything the computer does in
execution mode is therefore the consequence of "orders® issued to the computer by GRAY while
analysing an entered line in execution mode.

The Need For A Hodification

The correct execution of a statement results from the collection of correct "orders® issued
by GRAM in a correct sequence. However, the main work done by GRAM is not sSo much to issue
those orders but to find out which orders are to be issued.

In the MAPPED LEVEL (th2 name vwe give to our APL modified versiom), the function is to be
stored in such a way that the orders to be executed, and their proper sequeace, is known in

142



advance. The execution of ths function thus becomes faster because there is no aeed for synta
checking tipe. '

Happed Level

. We recall that CHECK examines the nature of a line and delivers it to GRAN if the line is
in execution mode. CHECK has of course other alternatives than calling GRAN. ¥We will not nodify
the existing alternatives; we will add one alternative more that we call Happed Level. It means
that once a line is entered, CAECK will ask an additional question: is it a mapping command? A
negative answer will result im the unmodified procedure going on. A positive answer will resualt
in a modified procedure described below.

It Bay be possible later to allow the use of the mappiag comeand to all users. Hovwever, in
order to simplify our discussion we will consider the case in which the mapping comsmand is
available to a priviledged APL user.

Using the mapping mode, the user can form a library of "mapped functions" that cannot be
edited or modified but can be 2xecuted by any APL user.

¥hen the user issues th2 mapping commaand, he must add two "parameters™ which are the nanme
of the unmapped function and the name under which the mapped functiom will be stored. The
fonction to be mapped either does not call for another fumction or calls for a number of
fanctions that have already been mapped. The list of all mapped functions is stored in the
symbol table in the workspace of the priviledged user.

i The mapping command vill "deliver" the function to be mapped to a module we call MAPGRAE to
indicate that, in a sense, this module is a mapping of the GRAM module.

BAPGRAM will proceed to analyse the lines of the function in the way GRAM would have done
it with the following differeances.

1= MAPSRAM considers all symbolic names as defined and does not issue value-error
messages. Every symbolic name is compared with the symbol table of mapped functions.
Deperding if the symbolic name exists or does not exist in the table, MAPSYNT will
respectively considar it a defimed function or variable.

2. . MAPGRAM will analyse lines of a function already tested im the unmapped mode by the
user. This functiom is supposedly syntax-error free (this concept will be discussed
later.) Therefore, for proper values of the arguments, GBAM would have issued a
aumber of "orders": fetch, store, reserve storage place, call for execution routine,
erase, etCe...

MAPGRAM will issue ™mapped" orders that could be described by: "copy and store in proper
order the ?orders' that GRAM would have issued."” For instance, whenever GRAN would have called
for storage, HAPGRAM will order to store a copy of the call for storage space; wvherever GRAN
would have called for a given 2xecution routine, MAPGRAM will order to store a copy of this
execution routine.

In short, the mapping of the function will consist of the collection ia proper order of
copies of fetching routines, store routines, execution routines, etcC...

These routines wvwill be linked either by MAPSYNT or by the module LINK active at execution
mode for mapped functions. The linkage consists of taking care of the proper order and of the
addrasses of the intermediate results and transforming the copy of a call into an actual call of
a roatine. It must for instanc2 insure that the output address of a given execution routine may
have to be identical with the input address of the pext execution routine.

In short LINK takes car2 of a mapped function in the execution mode. LINK is called every
time the name of a mapped function appears in a line at executioa tinme.

Ercor Messages

APL delivers two kinds of error messages. The first kind corresponds to what we call a
"built-in error”. It is delivered when GRAM concludes that there does not exist anr execution
routine corresponding to the symbols entered in the line. This kind of error will be de!;vergd
for instance if there is, at execution time, a symbolic name not yet defined or if a line 1S
entered with mathematical symbols in a non-sensical sequence. The second kind of error messages
is delivered by an execution routine when GRAM does find out, at a given stage of executios,
that executiomn routine is to be called and wvhen this routine cannot be executed for the values
and number of arguments delivered to it (rank error and domain error for imnstance).

143



The built-in errors cam be Jdetected during the mapping operation by MAPGRAM in exactly the
same vay as GRAH is doing it, i.e. by taking over in MAPGRAM the procedure followed by GRAM in
this case. The error messaje could display the faulty line and indicate the place vhere the
error has occured.

This however cannot be done for the second kind of errors. They cam be detected at the
mapped level only during execution time. The function is then stored differently and there is no
record, at this mapped level, of the form in which the function was entered ummapped.

However, this kind of error would have been detected at the unmapped level by an execution
routine which could tell the nature nature of the error (rank or domaim) and since we have at
the mnapped level a copy of the execution routine, it is still possible to deliver at this level
an error message containing the following information.

Aa The nature of the routine that has detected the error (addition or multiplicationmn or
iota operator routinpe etcC...)

b. The nature of the error (ramk error or domain error)
Ca The values of the arguments for which the error was detected.

This means that the copi2s of the execution routines stored at the mapped level have to be
slightly modified in their error message subroutines.

1f the user is mapping fuactions already tested at the unmapped level and if he checks that
all functions called by the onz he is mapping have already been nmapped before, there will
therefore be no error messige delivered during the mapping process; those are the functions
referred to before as Syntax—error-free functioss.

The Advantages Of The Happed Lavel Suggestion

The MHapped Level modified APL has many of the advantages of a compiler while being quite
distinct from it.

It is clear that the execution of the functions will be much faster at the mapped level.
The fact that the syntax analysis has been done makes them close to compiled functions. However
thers is this important difference wetween the mapped leveir and a compiler: A compiler delivers
an object program in the machine language that can be directly executed. In particular the
compiled function should have all the needed instructions for storage handling, vhereas a
function stored at the mapped level is still in need of the rodule LINK at execution tinme.

It is also clear that thes interractive feature of APL is not disrupted by the introduction
of the mapped level as it would have been with the use of a compiler. In the case of most
Fortran compilers for instance, alternating orders of compiling, executing, compiling, executing
etc... require successive loadings of the compiler. In our case, the same interpreter will
remain loaded in the computer while mapping or executing.

Another advantage is the flexibility of the combination of the two levels; in particular,
it facilitates the editing and debugging process. A function can be tested and displayed at the
unmapped level; the faulty line is then displayed with an indication of the place and the kind
of error. It is then possible to execute parts of the line instead of executing the whole
function. Such a facility would not have been available with a compiler. Once edited and
debugged, the function may be stored at the mapped level.

ACKNOWLEDGEMENTS

The author is indebted to Dr. ¥W.S. Adams, Dr. D.H. Bent and to Mr. G. Gabel for suggestioams
and fruitful discussions.

REFERENCES

1a In the Coamputing Center of the University of Alberta, a 360/67 IBN computer is used
(mainly uander M.T.S.). The c.p.u. time needed for loading am object program froa a
file is greater than the loading time needed in the APL case. There is therefore a
class of programs that would take less time to be executed with APL than vith a
FORTRANG generated sbject program (if loading time is added to the execution tinme).

144



