
SUGGESTION FOR A "MAPPED ,~ EXTEMSIOM OF ~PL

C. Leibog-it z
University of Alberta

Computing Center

Users s f APL are under the ~spell '~ of beauty, conciseness and elegance of the language.
They have however to go back t~ FortEan~ for instances whenever they cannot avoid a loop
executed a great number of ti~s in order to limit the CPU time used.

The natural desire for eslargisg the class[I] of cases in which nit would pay ~ to use APL,
is the origin of a great number of suggestions for modifications to and extensions of APL.

Hoverers an APL interpreher is a complicated collection of interrelated software forming a
unity that should not be disrupted. A modification in amy part of the collection will have
repercussions on the operation of the remainder of the prog[ams and there is no a priori reason
preventing these repercussions from being harmful and in need of necessaEy corrections that may
not be welcomed <if at all possible)

It is therefore not enough to show that a given modification is needed~ it is necessary to
show that it is indeed implementable and has no disruptive character.

Our proposed modification is, in a sense, a ~mapping ~ of an actual interpreter. The logical
structure of the mapping is su=h that we may conclude that: "if there exists an APL interpreter
that worksm then our mapping will work too. '~

Review Of K Non-Modified APL ~te~preter

Each time a line is entered from a terminal~ the interpreter checks the nature of the line:
is it for instance a command? ~r a line in definition mode? or in execution mode?... Let us
desi{nate by CHECK the module ~f the interpreter that finds out the nature of a line and decides
whlt other module is to handle the line. If the line has been entered in the execution mode, it
will be executed from right to left. However, ~or a number of reasons, this cannot be a
straightforward procedure:

There is no one-to-one correspondence between a "primitive mathematical symbol" and
an execution routin~. One same symbol may De a msnadic function or may be a dyadic
one.

2~ The mathematical leaning of a symbol may depend on the nature of another symbol
placed at its left.

3~

4o

There may be brackets altering the normal right-to-left order of operations.

There may be mistak.=s in the line making it unexecutable.

there must therefore exist a module that will analyse the line, will call execution
routines in a proper order and provide those routines with the values of the variables.

We are not concerned here with the way in which this is done, it is enough for us to know
thlt it is actually done, i.e. there exists in the interpreter a module, we call it GHAM, that
takes care of a line in execution mode. GRAd issues "orders" for space, for fetching values for
parameters and variables, for _~rasing intermediate unnecessary results, for storing needed
intermediate results, for finding out which routine is to be called, for calling it, for issuing
error messages.

We thus designate by ~RAM all the parts of the interpreter that stand between a line
recognized in execution mode, and its actual execution. Everything the computer does in
execution mode is therefore the consequence of "orders" issued to the computer by GRAM while
analysing an entered line in execution mode.

The Need For A Modification

The correct execution of i statement results from the collection of correct "orders" issued
by GRAM in a correct sequence. However, the main work done by GRAM is not S O such to issue
those orders but to find out which orders are to be issued

In the MAPPED LEVEL {the name we give to our &PL modified versios), the function is to be
stored in such a way that the orders to be executed, and their proper sequence, is known in

142

advance. The execution of th~ function thus becomes faster because there is no need for syntax
checking time.

~KR~e__d Level

We recall that CHECK examines the nature of a line and delivers it £o GRAM if the line is
ia eKecution mode. CHECK has o~ course other alternatives than calling GaAS~ ~e will not modify
the existing alternatives; we will add one alternative more that we call Sapped Level. It means
that once a line is entered, C~ECK will ask an additional question: is it a mapping coa~asd? A
negative answer will result im the unmodified procedure going on. A positive answer will result
in a modified procedure described below.

It may be possible later to allow the use of the mapping command to all users. However, i,
order to simplify our discussiDn we will consider the case in which the mapping command is
available to a priviledged APL user.

Using the sapping mode, the user can form a library of "mapped functions" that cannot be
edited or modified but can be executed by any APL user.

When the user issues thm mapping command, he must add two "parameters" which are the name
of the unmapped function and the name under which the mapped function will be stored. The
function to be mapped eith~.r does not call for another function or calls for a number of
functions that have already been mapped. The list of all mapped functions is stored in the
symbol table in the workspace ~f the priviledged user.

The mapping command will "deliver" the function to be mapped to a module we call MAPGRAM to
indicate that, in a sense, thi~ module is a mapping of the GRAM modules

~APGRAM will proceed to analyse the lines of the function in the way GRAM would have done
it with the following differenzes.

I.

.

MAP~RAM considers all symbolic names as defined and does not issue value-error
messages. Every symbolic name is compared with the symbol table of mapped functions.
Depending if the symbolic name exists or does not exist in the table, MAPSYNT will
respectively consider it a defined function or variable.

M&PSRAM will analyse lines of a function already tested in the unsapped mode b X the
user. This function is supposedly syntax-error free Cthis concept will be discussed
later.} Therefore, for proper values of the arguments, GRAM would have issued a
number of "orders": fetch, store, reserve storage place, call for execution routine,
erase, etc...

MAPGR&M will issue "sapped" orders that could be described by: "copy and store in proper
order the 'orders' that GRAM e~uld have issued." For instance, whenever GRAM would have called
foe storage, MAPGRAM will 3rder to store a copy of the call for storage space; wherever GRAM
would have called for a given execution routine, MAPGRAM will order to store a copy of this
execution routine.

In short, the sapping of the function will consist of the collection in proper order of
copies of fetching routines, store routines, execution routines, etc...

These routines will be linked either by MAPSYNT or by the module LINK active at execution
mode for mapped functions. The linkage consists of taking care of the proper order and of the
addresses of the intermediate results and transforming the copy of a call into an actual call of
a routine. It must for instance insure that the output address of a given execution routine may
have to be identical with the input address of the next execution routine.

In short LINK takes care of a mapped function in the execution mode. LINK is called every
time the name of a sapped function appears in a line at execution time.

Error Messa q~

&PL delivers two kinds of error messages. The first kind corresponds to what we call a
"built-in error". It is delivered when GRAM concludes that there does not exist an execution
routine corresponding to the symbols entered in the line. This kind of error will be delivered
for instance if there is, at execution time, a symbolic name not yet defined or if a line is
entered with mathematical symbols in a non-sensical sequence. The second kind of error messages
is delivered by an execution r~atine when GRAM does find out, at a given stage of execution,
that execution routine is to be called and when this routine cannot be executed for the values
and number of arguments delivered to it (rank error and domain error for instance).

143

